分析区块链数据集的四种新机器学习方法
齐齐哈尔时尚网小编提示,记得把"分析区块链数据集的四种新机器学习方法"分享给大家!
使用机器学习来分析区块链数据集是一个令人着迷的挑战。区块链数据集除了具有不可思议的潜力,可以帮助我们了解加密货币资产的行为,但是这对机器学习的实践者提出了非常独特的挑战。然而这些挑战被转化为大多数传统机器学习技术的主要障碍。机器智能技术的快速发展使得新机器学习方法的产生成为可能,这些方法非常适用于区块链数据集的分析。在IntoTheBlock,我们定期试验了这些新方法,以提高市场情报信号的效率。今天,我想简要介绍一下机器学习领域的一些新思想,它们可以在分析区块链数据时产生有趣的结果。
区块链数据集提供了一个与加密货币资产行为相关的独特的数据宇宙,因此,为机器学习方法的应用提供了独特的机会。然而,区块链数据集的性质和结构给机器学习方法带来了独特的挑战。虽然我们可能认为区块链数据集是机器学习应用程序的天堂,但传统方法通常会遇到一些意想不到的挑战:
·缺少标记数据:区块链数据集中只有很少的标记数据可用于训练机器学习模型。
·模糊数据:区块链充满了加密或模糊的数据,几乎不可能进行分析。
·缺乏基准测试模型:机器学习就是将模型与其他模型进行基准测试。在一个很少有文档记录的模型产生可信结果的空间中,这样的结果有点困难。
传统的机器学习思想
传统的机器学习实践者将世界分为两类模型:
·监督学习(UnsupervisedLearning):有监督学习(SupervisedLearning)这个名称表示有一名导师作为老师在场。基本上,监督学习是一种我们使用数据来教或训练机器的学习,这些数据都有很好的标记,这意味着一些数据已经有了正确的答案。
·非监督学习:非监督学习是机器使用既不分类也不标记的信息进行训练,并允许算法在没有指导的情况下对该信息进行操作。在这里,机器的任务是根据相似、模式和差异对未排序的信息进行分组,而不需要事先对数据进行任何训练。